Qus : 3 NIMCET PYQ 4 If (4, 3) and (12, 5) are the two foci of an ellipse passing through the
origin, then the eccentricity of the ellipse is
1 $$\frac{\sqrt{13}}{9}$$ 2 $$\frac{\sqrt{13}}{18}$$ 3 $$\frac{\sqrt{17}}{18}$$ 4 $$\frac{\sqrt{17}}{9}$$ Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2024 PYQ Solution
Given: Foci are (4, 3) and (12, 5), and the ellipse passes through the origin (0, 0).
Step 1: Use ellipse definition
$PF_1 = \sqrt{(0 - 4)^2 + (0 - 3)^2}
= \sqrt{25}
= 5$
$PF_2 = \sqrt{(0 - 12)^2 + (0 - 5)^2}
= \sqrt{169}
= 13$
Total distance = $5 + 13 = 18 \Rightarrow 2a = 18 \Rightarrow a = 9$
Step 2: Distance between the foci
$2c = \sqrt{(12 - 4)^2 + (5 - 3)^2} = \sqrt{64 + 4} = \sqrt{68} \Rightarrow c = \sqrt{17}$
Step 3: Find eccentricity
$e = \dfrac{c}{a} = \dfrac{\sqrt{17}}{9}$
✅ Final Answer: $\boxed{\dfrac{\sqrt{17}}{9}}$
Qus : 4 NIMCET PYQ 2 The equation $3x^2 + 10xy + 11y^2 + 14x + 12y + 5 = 0$ represents
1 a circle 2 an ellipse 3 a hyperbola 4 a parabola Go to Discussion NIMCET Previous Year PYQ NIMCET NIMCET 2024 PYQ Solution
Rule for Classifying Conics Using Discriminant
Given the equation: \( Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 \)
Compute: \( \Delta = B^2 - 4AC \)
? Based on value of \( \Delta \):
Ellipse : \( \Delta < 0 \) and \( A \ne C \), \( B \ne 0 \) → tilted ellipse
Circle : \( \Delta < 0 \) and \( A = C \), \( B = 0 \)
Parabola : \( \Delta = 0 \)
Hyperbola : \( \Delta > 0 \)
Example:
For the equation: \( 3x^2 + 10xy + 11y^2 + 14x + 12y + 5 = 0 \)
\( A = 3 \), \( B = 10 \), \( C = 11 \) →
\( \Delta = 10^2 - 4(3)(11) = 100 - 132 = -32 \)
Since \( \Delta < 0 \), it represents an ellipse .
[{"qus_id":"3918","year":"2019"},{"qus_id":"3910","year":"2019"},{"qus_id":"9445","year":"2020"},{"qus_id":"10672","year":"2021"},{"qus_id":"10698","year":"2021"},{"qus_id":"11156","year":"2022"},{"qus_id":"11622","year":"2024"},{"qus_id":"11659","year":"2024"},{"qus_id":"10198","year":"2015"},{"qus_id":"10479","year":"2014"}]